Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Clin Microbiol Antimicrob ; 23(1): 40, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702782

RESUMEN

BACKGROUND: Pretomanid is a key component of new regimens for the treatment of drug-resistant tuberculosis (TB) which are being rolled out globally. However, there is limited information on the prevalence of pre-existing resistance to the drug. METHODS: To investigate pretomanid resistance rates in China and its underlying genetic basis, as well as to generate additional minimum inhibitory concentration (MIC) data for epidemiological cutoff (ECOFF)/breakpoint setting, we performed MIC determinations in the Mycobacterial Growth Indicator Tube™ (MGIT) system, followed by WGS analysis, on 475 Mycobacterium tuberculosis (MTB) isolated from Chinese TB patients between 2013 and 2020. RESULTS: We observed a pretomanid MIC distribution with a 99% ECOFF equal to 0.5 mg/L. Of the 15 isolates with MIC values > 0.5 mg/L, one (MIC = 1 mg/L) was identified as MTB lineage 1 (L1), a genotype previously reported to be intrinsically less susceptible to pretomanid, two were borderline resistant (MIC = 2-4 mg/L) and the remaining 12 isolates were highly resistant (MIC ≥ 16 mg/L) to the drug. Five resistant isolates did not harbor mutations in the known pretomanid resistant genes. CONCLUSIONS: Our results further support a breakpoint of 0.5 mg/L for a non-L1 MTB population, which is characteristic of China. Further, our data point to an unexpected high (14/475, 3%) pre-existing pretomanid resistance rate in the country, as well as to the existence of yet-to-be-discovered pretomanid resistance genes.


Asunto(s)
Antituberculosos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/aislamiento & purificación , China/epidemiología , Humanos , Antituberculosos/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Prevalencia , Nitroimidazoles/farmacología , Genotipo , Mutación , Secuenciación Completa del Genoma
2.
PLOS Glob Public Health ; 3(10): e0002283, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37851685

RESUMEN

Bedaquiline (B), pretomanid (Pa) and linezolid (L) are key components of new regimens for treating rifampicin-resistant tuberculosis (TB). However, there is limited information on the global prevalence of resistance to these drugs and the impact of resistance on treatment outcomes. Mycobacterium tuberculosis (MTB) phenotypic drug susceptibility and whole-genome sequence (WGS) data, as well as patient profiles from 4 pretomanid-containing trials-STAND, Nix-TB, ZeNix and SimpliciTB-were used to investigate the rates of baseline resistance (BR) and acquired resistance (AR) to BPaL drugs, as well as their genetic basis, risk factors and impact on treatment outcomes. Data from >1,000 TB patients enrolled from 2015 to 2020 in 12 countries was assessed. We identified 2 (0.3%) participants with linezolid BR. Pretomanid BR was also rare, with similar rates across TB drug resistance types (0-2.1%). In contrast, bedaquiline BR was more prevalent among participants with highly resistant TB or longer prior treatment histories than those with newly diagnosed disease (5.2-6.3% vs. 0-0.3%). Bedaquiline BR was a risk factor for bacteriological failure or relapse in Nix-TB/ZeNix; 3/12 (25%, 95% CI 5-57%) participants with vs. 6/185 (3.2%, 1.2-6.9%) without bedaquiline BR. Across trials, we observed no linezolid AR, and only 3 cases of bedaquiline AR, including 2 participants with poor adherence. Overall, pretomanid AR was also rare, except in ZeNix patients with bedaquiline BR. WGS analyses revealed novel mutations in canonical resistant genes and, in 7 MTB isolates, the genetic determinants could not be identified. The overall low rates of BR to linezolid and pretomanid, and to a lesser extent to bedaquiline, observed in the pretomanid trials are in support of the worldwide implementation of BPaL-based regimens. Similarly, the overall low AR rates observed suggest BPaL drugs are better protected in the regimens trialed here than in other regimens combining bedaquiline with more, but less effective drugs.

4.
N Engl J Med ; 387(9): 810-823, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36053506

RESUMEN

BACKGROUND: The bedaquiline-pretomanid-linezolid regimen has been reported to have 90% efficacy against highly drug-resistant tuberculosis, but the incidence of adverse events with 1200 mg of linezolid daily has been high. The appropriate dose of linezolid and duration of treatment with this agent to minimize toxic effects while maintaining efficacy against highly drug-resistant tuberculosis are unclear. METHODS: We enrolled participants with extensively drug-resistant (XDR) tuberculosis (i.e., resistant to rifampin, a fluoroquinolone, and an aminoglycoside), pre-XDR tuberculosis (i.e., resistant to rifampin and to either a fluoroquinolone or an aminoglycoside), or rifampin-resistant tuberculosis that was not responsive to treatment or for which a second-line regimen had been discontinued because of side effects. We randomly assigned the participants to receive bedaquiline for 26 weeks (200 mg daily for 8 weeks, then 100 mg daily for 18 weeks), pretomanid (200 mg daily for 26 weeks), and daily linezolid at a dose of 1200 mg for 26 weeks or 9 weeks or 600 mg for 26 weeks or 9 weeks. The primary end point in the modified intention-to-treat population was the incidence of an unfavorable outcome, defined as treatment failure or disease relapse (clinical or bacteriologic) at 26 weeks after completion of treatment. Safety was also evaluated. RESULTS: A total of 181 participants were enrolled, 88% of whom had XDR or pre-XDR tuberculosis. Among participants who received bedaquiline-pretomanid-linezolid with linezolid at a dose of 1200 mg for 26 weeks or 9 weeks or 600 mg for 26 weeks or 9 weeks, 93%, 89%, 91%, and 84%, respectively, had a favorable outcome; peripheral neuropathy occurred in 38%, 24%, 24%, and 13%, respectively; myelosuppression occurred in 22%, 15%, 2%, and 7%, respectively; and the linezolid dose was modified (i.e., interrupted, reduced, or discontinued) in 51%, 30%, 13%, and 13%, respectively. Optic neuropathy developed in 4 participants (9%) who had received linezolid at a dose of 1200 mg for 26 weeks; all the cases resolved. Six of the seven unfavorable microbiologic outcomes through 78 weeks of follow-up occurred in participants assigned to the 9-week linezolid groups. CONCLUSIONS: A total of 84 to 93% of the participants across all four bedaquiline-pretomanid-linezolid treatment groups had a favorable outcome. The overall risk-benefit ratio favored the group that received the three-drug regimen with linezolid at a dose of 600 mg for 26 weeks, with a lower incidence of adverse events reported and fewer linezolid dose modifications. (Funded by the TB Alliance and others; ZeNix ClinicalTrials.gov number, NCT03086486.).


Asunto(s)
Antituberculosos , Linezolid , Nitroimidazoles , Tuberculosis Resistente a Múltiples Medicamentos , Aminoglicósidos/uso terapéutico , Antituberculosos/efectos adversos , Antituberculosos/uso terapéutico , Diarilquinolinas/efectos adversos , Fluoroquinolonas , Humanos , Linezolid/efectos adversos , Linezolid/uso terapéutico , Nitroimidazoles/efectos adversos , Nitroimidazoles/uso terapéutico , Rifampin/uso terapéutico , Medición de Riesgo , Resultado del Tratamiento , Tuberculosis/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
5.
J Antimicrob Chemother ; 77(6): 1685-1693, 2022 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-35260883

RESUMEN

OBJECTIVES: To develop a robust phenotypic antimicrobial susceptibility testing (AST) method with a correctly set breakpoint for pretomanid (Pa), the most recently approved anti-tuberculosis drug. METHODS: The Becton Dickinson Mycobacterial Growth Indicator Tube™ (MGIT) system was used at six laboratories to determine the MICs of a phylogenetically diverse collection of 356 Mycobacterium tuberculosis complex (MTBC) strains to establish the epidemiological cut-off value for pretomanid. MICs were correlated with WGS data to study the genetic basis of differences in the susceptibility to pretomanid. RESULTS: We observed ancient differences in the susceptibility to pretomanid among various members of MTBC. Most notably, lineage 1 of M. tuberculosis, which is estimated to account for 28% of tuberculosis cases globally, was less susceptible than lineages 2, 3, 4 and 7 of M. tuberculosis, resulting in a 99th percentile of 2 mg/L for lineage 1 compared with 0.5 mg/L for the remaining M. tuberculosis lineages. Moreover, we observed that higher MICs (≥8 mg/L), which probably confer resistance, had recently evolved independently in six different M. tuberculosis strains. Unlike the aforementioned ancient differences in susceptibility, these recent differences were likely caused by mutations in the known pretomanid resistance genes. CONCLUSIONS: In light of these findings, the provisional critical concentration of 1 mg/L for MGIT set by EMA must be re-evaluated. More broadly, these findings underline the importance of considering the global diversity of MTBC during clinical development of drugs and when defining breakpoints for AST.


Asunto(s)
Mycobacterium tuberculosis , Nitroimidazoles , Tuberculosis , Antituberculosos/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/genética , Tuberculosis/microbiología
6.
N Engl J Med ; 382(10): 893-902, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32130813

RESUMEN

BACKGROUND: Patients with highly drug-resistant forms of tuberculosis have limited treatment options and historically have had poor outcomes. METHODS: In an open-label, single-group study in which follow-up is ongoing at three South African sites, we investigated treatment with three oral drugs - bedaquiline, pretomanid, and linezolid - that have bactericidal activity against tuberculosis and to which there is little preexisting resistance. We evaluated the safety and efficacy of the drug combination for 26 weeks in patients with extensively drug-resistant tuberculosis and patients with multidrug-resistant tuberculosis that was not responsive to treatment or for which a second-line regimen had been discontinued because of side effects. The primary end point was the incidence of an unfavorable outcome, defined as treatment failure (bacteriologic or clinical) or relapse during follow-up, which continued until 6 months after the end of treatment. Patients were classified as having a favorable outcome at 6 months if they had resolution of clinical disease, a negative culture status, and had not already been classified as having had an unfavorable outcome. Other efficacy end points and safety were also evaluated. RESULTS: A total of 109 patients were enrolled in the study and were included in the evaluation of efficacy and safety end points. At 6 months after the end of treatment in the intention-to-treat analysis, 11 patients (10%) had an unfavorable outcome and 98 patients (90%; 95% confidence interval, 83 to 95) had a favorable outcome. The 11 unfavorable outcomes were 7 deaths (6 during treatment and 1 from an unknown cause during follow-up), 1 withdrawal of consent during treatment, 2 relapses during follow-up, and 1 loss to follow-up. The expected linezolid toxic effects of peripheral neuropathy (occurring in 81% of patients) and myelosuppression (48%), although common, were manageable, often leading to dose reductions or interruptions in treatment with linezolid. CONCLUSIONS: The combination of bedaquiline, pretomanid, and linezolid led to a favorable outcome at 6 months after the end of therapy in a high percentage of patients with highly drug-resistant forms of tuberculosis; some associated toxic effects were observed. (Funded by the TB Alliance and others; ClinicalTrials.gov number, NCT02333799.).


Asunto(s)
Antituberculosos/administración & dosificación , Diarilquinolinas/administración & dosificación , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Linezolid/administración & dosificación , Nitroimidazoles/administración & dosificación , Administración Oral , Adolescente , Adulto , Antituberculosos/efectos adversos , Carga Bacteriana , Diarilquinolinas/efectos adversos , Quimioterapia Combinada , Tuberculosis Extensivamente Resistente a Drogas/mortalidad , Femenino , Humanos , Análisis de Intención de Tratar , Linezolid/efectos adversos , Masculino , Persona de Mediana Edad , Mycobacterium tuberculosis/aislamiento & purificación , Nitroimidazoles/efectos adversos , Resultado del Tratamiento , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Pulmonar/tratamiento farmacológico , Adulto Joven
7.
Antimicrob Agents Chemother ; 60(6): 3316-22, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26976868

RESUMEN

The increasing global burden of multidrug-resistant tuberculosis (MDR-TB) requires reliable drug susceptibility testing that accurately characterizes susceptibility and resistance of pathogenic bacteria to effectively treat patients with this deadly disease. Delamanid is an anti-TB agent first approved in the European Union in 2014 for the treatment of pulmonary MDR-TB in adults. Using the agar proportion method, delamanid MIC was determined for 460 isolates: 316 from patients enrolled in a phase 2 global clinical trial, 76 from two phase 2 early bactericidal activity trials conducted in South Africa, and 68 isolates obtained outside clinical trials (45 from Japanese patients and 23 from South African patients). With the exception of two isolates, MICs ranged from 0.001 to 0.05 µg/ml, resulting in an MIC50 of 0.004 µg/ml and an MIC90 of 0.012 µg/ml. Various degrees of resistance to other anti-TB drugs did not affect the distribution of MICs, nor did origin of isolates from regions/countries other than South Africa. A critical concentration/breakpoint of 0.2 µg/ml can be used to define susceptible and resistant isolates based on the distribution of MICs and available pharmacokinetic data. Thus, clinical isolates from delamanid-naive patients with tuberculosis have a very low MIC for delamanid and baseline resistance is rare, demonstrating the potential potency of delamanid and supporting its use in an optimized background treatment regimen for MDR-TB.


Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Nitroimidazoles/farmacología , Oxazoles/farmacología , Farmacorresistencia Bacteriana Múltiple , Humanos , Pruebas de Sensibilidad Microbiana , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/microbiología
8.
J Infect Dis ; 193(12): 1703-10, 2006 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-16703514

RESUMEN

Multidrug-resistant tuberculosis (MDR-TB) poses a serious threat to global public health. The mutations responsible for drug resistance in Mycobacterium tuberculosis have been identified, but what impact these mutations have on bacterial fitness is controversial. We analyzed 3 MDR strains of M. tuberculosis obtained from human immunodeficiency virus-negative patients with chronic pulmonary TB. One of these strains harbored a chromosomal deletion encompassing 15 open reading frames. Genes deleted in this strain included acr1, which encodes the virulence factor alpha-crystallin (Acr) 1, a protein that has been reported to be essential for M. tuberculosis replication in macrophages. We found that all 3 MDR isolates, including the acr1-deficient strain, replicated in cultured murine and human macrophages with the same kinetics as H37Rv, a virulent laboratory strain. These observations challenge the prevailing view that MDR bacteria are less fit than drug-susceptible bacteria and indicate that Acr1 is dispensable for bacterial growth in the human lung.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Macrófagos/microbiología , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/genética , Factores de Virulencia/genética , alfa-Cristalinas/genética , Animales , Línea Celular , Células Cultivadas , Cromosomas Bacterianos/genética , Recuento de Colonia Microbiana , Infecciones por VIH/complicaciones , Histocitoquímica , Humanos , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/aislamiento & purificación , Mycobacterium tuberculosis/patogenicidad , Eliminación de Secuencia , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Factores de Virulencia/fisiología , alfa-Cristalinas/fisiología
9.
Infect Immun ; 73(1): 546-51, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15618194

RESUMEN

The dynamics of host-pathogen interactions have important implications for the design of new antimicrobial agents to treat chronic infections such as tuberculosis (TB), which is notoriously refractory to conventional drug therapy. In the mouse model of TB, an acute phase of exponential bacterial growth in the lungs is followed by a chronic phase characterized by relatively stable numbers of bacteria. This equilibrium could be static, with little ongoing replication, or dynamic, with continuous bacterial multiplication balanced by bacterial killing. A static model predicts a close correspondence between "viable counts" (live bacteria) and "total counts" (live plus dead bacteria) in the lungs over time. A dynamic model predicts the divergence of total counts and viable counts over time due to the accumulation of dead bacteria. Here, viable counts are defined as bacterial CFU enumerated by plating lung homogenates; total counts are defined as bacterial chromosome equivalents (CEQ) enumerated by using quantitative real-time PCR. We show that the viable and total bacterial counts in the lungs of chronically infected mice do not diverge over time. Rapid degradation of dead bacteria is unlikely to account for the stability of bacterial CEQ numbers in the lungs over time, because treatment of mice with isoniazid for 8 weeks led to a marked reduction in the number of CFU without reducing the number of CEQ. These observations support the hypothesis that the stable number of bacterial CFU in the lungs during chronic infection represents a static equilibrium between host and pathogen.


Asunto(s)
Pulmón/microbiología , Mycobacterium tuberculosis/crecimiento & desarrollo , Tuberculosis/microbiología , Animales , Cromosomas Bacterianos , Enfermedad Crónica , Recuento de Colonia Microbiana , Ratones , Ratones Endogámicos C57BL
10.
Proc Natl Acad Sci U S A ; 100(24): 14321-6, 2003 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-14623960

RESUMEN

Pathogenetic processes that facilitate the entry, replication, and persistence of Mycobacterium tuberculosis (MTB) in the mammalian host likely include the regulated expression of specific sets of genes at different stages of infection. Identification of genes that are differentially expressed in vivo would provide insights into host-pathogen interactions in tuberculosis (TB); this approach might be particularly valuable for the study of human TB, where experimental opportunities are limited. In this study, the levels of selected MTB mRNAs were quantified in vitro in axenic culture, in vivo in the lungs of mice, and in lung specimens obtained from TB patients with active disease. We report the differential expression of MTB mRNAs associated with iron limitation, alternative carbon metabolism, and cellular hypoxia, conditions that are thought to exist within the granulomatous lesions of TB, in the lungs of wild-type C57BL/6 mice as compared with bacteria grown in vitro. Analysis of the same set of mRNAs in lung specimens obtained from TB patients revealed differences in MTB gene expression in humans as compared with mice.


Asunto(s)
Genes Bacterianos , Mycobacterium tuberculosis/genética , Tuberculosis Pulmonar/genética , Animales , Carbono/metabolismo , Hipoxia de la Célula , Ácidos Grasos/metabolismo , Femenino , Expresión Génica , Gluconeogénesis , Humanos , Técnicas In Vitro , Hierro/metabolismo , Ratones , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/metabolismo , Oxígeno/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especificidad de la Especie , Tuberculosis Pulmonar/metabolismo , Tuberculosis Pulmonar/microbiología
11.
Infect Immun ; 71(11): 6124-31, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14573627

RESUMEN

Mycobacterium tuberculosis, the causative agent of tuberculosis, possesses a class Ib ribonucleotide reductase (RNR), encoded by the nrdE and nrdF2 genes, in addition to a putative class II RNR, encoded by nrdZ. In this study we probed the relative contributions of these RNRs to the growth and persistence of M. tuberculosis. We found that targeted knockout of the nrdF2 gene could be achieved only in the presence of a complementing allele, confirming that this gene is essential under normal, in vitro growth conditions. This observation also implied that the alternate class Ib small subunit encoded by the nrdF1 gene is unable to substitute for nrdF2 and that the class II RNR, NrdZ, cannot substitute for the class Ib enzyme, NrdEF2. Conversely, a DeltanrdZ null mutant of M. tuberculosis was readily obtained by allelic exchange mutagenesis. Quantification of levels of nrdE, nrdF2, nrdF1, and nrdZ gene expression by real-time, quantitative reverse transcription-PCR with molecular beacons by using mRNA from aerobic and O(2)-limited cultures showed that nrdZ was significantly induced under microaerophilic conditions, in contrast to the other genes, whose expression was reduced by O(2) restriction. However, survival of the DeltanrdZ mutant strain was not impaired under hypoxic conditions in vitro. Moreover, the lungs of B6D2/F(1) mice infected with the DeltanrdZ mutant had bacterial loads comparable to those of lungs infected with the parental wild-type strain, which argues against the hypothesis that nrdZ plays a significant role in the virulence of M. tuberculosis in this mouse model.


Asunto(s)
Mycobacterium tuberculosis/genética , Ribonucleótido Reductasas/genética , Animales , Femenino , Hidroxiurea/farmacología , Ratones , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidad , Oxidación-Reducción , ARN Bacteriano/análisis , Ribonucleótido Reductasas/clasificación , Ribonucleótido Reductasas/fisiología , Ribonucleótidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...